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An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented.
The approach is based on message passing where messages are averaged over a large number of replicated
variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is
required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric-
�RS�-like structure to include a more complex one-step replica-symmetry-breaking-like �1RSB-like� ansatz. To
demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear
perceptron and for multiuser detection in code division multiple access �CDMA� under different noise models.
Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal
detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition
line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB
ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a
more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.
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I. INTRODUCTION

Efficient inference in large complex systems is a major
challenge with significant implications in science, engineer-
ing, and computing. Exact inference is computationally hard
in complex systems and a range of approximation methods
have been devised over the years, many of which have been
originated in the physics literature �1�. A recent review �2�
highlights the links between the various approximation meth-
ods and their applications.

Approximative Bayesian inference techniques arguably
offer the most principled approach to information extraction,
by combining a rigorous statistical approach with a feasible
but systematic approximation. Although message passing
techniques have existed for some time in the computer sci-
ence community �3,4� they have enjoyed growing popularity
in recent years �5�, mainly within the context of Bayesian
networks and the use of belief propagation �BP� for a range
of inference applications, from signal extraction in telecom-
munication to machine learning.

The main advantage of these techniques is their moderate
growth in computational cost, with respect to the systems
size, due to the local nature of the calculation when applied
to sparse graphs. Until recently, message passing techniques
were deemed unsuitable for inference in densely connected
systems due to the inherently high number of short loops in
the corresponding graphical representation, and the large
number of connections per node, which results in a high
computational cost. Both properties are considered prohibi-
tive to the use of conventional message passing techniques in
such problems.

A recently suggested method for message passing in
densely connected systems �6� relies on replacing individual
messages by averages sampled from a Gaussian distribution
of some mean and variance that are modified iteratively. The
method has been applied for the code division multiple ac-
cess �CDMA� signal detection inference problem; it success-
fully finds optimal solutions where the space of solutions is

contiguous but breaks down when the solution space be-
comes fragmented, for instance, when there is a mismatch
between the true and assumed noise levels in the CDMA
detection problem. The emergence of competing solutions
gives rise to conflicting messages that result in bungled av-
erage messages and suboptimal performance. In statistical
physics terms, it corresponds to the replica symmetric solu-
tion in dense systems �7� and gives poor estimates when
more complex solution structures are required.

In the current paper, we methodologically extend the ap-
proach of Kabashima �6� for inference in dense graphs by
considering a large �infinite� number of replicated variable
systems, exposed to the same evidential data �received sig-
nals�. Each one of the systems represents a pure state and a
possible solution. The pseudoposteriors, that form the basis
for our estimates, are based on averages over the replicated
systems. The method has been employed previously only in
the noncritical regime �8�, using the most basic replica-
symmetric-like �RS-like� ansatz for the solution structure. In
this paper we study both critical and noncritical regimes and
extend the solution structure considered to include one-step-
replica-symmetry-breaking-like �1RSB-like� structures �9�.
To demonstrate the potential of this approach and the perfor-
mance obtained using the resulting algorithm we apply the
method to two different but related problems: signal detec-
tion in code division multiple access and learning in the Ising
linear perceptron �ILP�.

CDMA is a signal modulation �or spreading� method used
when multiple transmitters communicate with a single re-
ceiver simultaneously �10�. It is mainly used in wireless
communication for efficiently separating the multiple mes-
sages �e.g., from mobile phones� at the receiver end �base
station� given the aggregated and corrupted received signal.
Messages are modulated by the various users prior to trans-
mission �uplink� and by the single transmitter on the way
back �downlink�. The shared knowledge of the modulation
sequences by the receiver facilitates the signal detection; the
aim is to optimally retrieve the multiple messages with mini-
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mal corruption. The method has been thoroughly studied in
the information theory literature.

Perceptrons �11� serve as rudimentary models of interact-
ing biological neurons; they have been studied using a range
of analytical methods to gain insight into the behavior, limi-
tations, and capabilities of groups of interacting nonlinear
elements �neurons�. The basic perceptron consists of a prod-
uct between a binary input vector and a weight vector of
equal dimensionality; a nonlinear function of that product
constitutes the perceptron’s output. Learning in such systems
corresponds to an estimation of the interaction coefficients
�weights� between elements, such that a certain input-output
relation is realized. The latter is instantiated by a sample of
input vectors and the corresponding output values and the
goal is to optimally infer the values of the weights. In addi-
tion to their role as simple biological models, perceptrons
serve as basic building blocks in many practical pattern
analysis techniques and algorithms �12�. The variant studied
here, ILP, is a special case where the weight vector com-
prises binary values and the output function is linear.

We investigate both RS and 1RSB-like structures. The
former is applied to both CDMA and ILP problems and
seems to be sufficient for obtaining optimal performances;
the latter is applied to a variant of the CDMA signal detec-
tion problem with a more complex noise model that exhibits
RSB-like behavior, to demonstrate its efficacy for particu-
larly difficult inference tasks.

In Sec. II we will introduce the general models studied,
followed by a brief review of message passing techniques for
dense systems in Sec. III. The general derivation of our ap-
proach, for both RS and RSB-like solution structures, will be
presented in Sec. IV; numerical studies of both CDMA signal
detection and ILP learning will be reported in Sec. V. To
demonstrate the method based on the more complex 1RSB
solution structure, and to examine its efficacy to problems
that require such structures, we will introduce a variant of the
CDMA signal detection problem and study it numerically in
Sec. VI. We will conclude the presentation with a summary
and point to future research directions. Details of the deriva-
tion will be provided in Appendixes A–E.

II. MODELS STUDIED

Before describing the inference method, the approach
taken and the algorithms derived from it, it would be helpful
to briefly describe the exemplar inference problems tackled
in this paper.

We apply the method to two different but related infer-
ence problems: signal detection in CDMA and learning in the
Ising linear perceptron. Both correspond to inference prob-
lems where data points are noisy representations of sums of
binary variables modulated by random binary values.

Multiple access communication refers to the transmission
of multiple messages to a single receiver. The scenario we
study here, described schematically in Fig. 1�a�, is that of K
users transmitting independent messages over an additive
white Gaussian noise �AWGN� channel of zero mean and
variance �0

2. Various methods are in place for separating the

messages, in particular time, frequency, and code division
multiple access �10�. The latter, is based on spreading the
signal by using K individual random binary spreading codes
of spreading factor N. We consider the large-system limit, in
which the number of users K tends to infinity while the sys-
tem load ��K /N is kept to be O�1�. We focus on a CDMA
system using binary phase shift keying �BPSK� symbols and
will assume the power is completely controlled to unit en-
ergy. The received aggregated, modulated and corrupted sig-
nal is of the form

y� =
1

�N
�
k=1

K

s�kbk + �0n�, �1�

where bk is the bit transmitted by user k, s�k is the spreading
chip value, n� is the Gaussian noise variable drawn from
N�0,1�, and y� is the received message. The task is to infer
the original transmission from the set of received messages.
This process is reminiscent of the learning task performed by
a perceptron with binary weights and linear output, which is
the next example considered in this paper.

Learning in neural networks has attracted considerable
theoretical interest. In particular we focus on supervised
learning from examples, which relies on a training set con-
sisting of examples of the target task �13�. We consider a
perceptron, described schematically in Fig. 1�b�, which is a
network that sums a single layer of inputs s�k with synaptic
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FIG. 1. �Color online� Schematic representation of �a� the
CDMA system, �b� the ILP.
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weights bk and passes the result through a transfer function
y�,

y� = g� 1
�K

�
k=1

K

s�kbk	 , �2�

where g is typically a nonlinear sigmoidal function. If g�x�
=x the network is termed linear output perceptron. If the
weights bk� 
±1� the network is called Ising perceptron.
Learning is a search through the weight space for the percep-
tron that best approximates a target rule.

The similarity between the linear perceptron of Eq. �2�
and the CDMA detection problem of Eq. �1� allows for a
direct relation between the two problems to be established.
The main difference between the problems is the regime of
interest. While CDMA detection applications are of interest
mainly for noncritical low load values, ILP studies focused
on the critical regime. We consider both regimes in this pa-
per.

III. MESSAGE PASSING FOR INFERENCE
IN DENSELY CONNECTED SYSTEMS

Graphical models �Bayes belief networks� provide a pow-
erful framework for modelling statistical dependencies be-
tween variables �3–5�. They play an essential role in devising
a principled probabilistic framework for inference in a broad
range of applications.

Message passing techniques are typically used for infer-
ence in graphical models that can be represented by a sparse
graph with a few �typically long� loops. They are aimed at
obtaining �pseudo� posterior estimates for the system’s vari-
ables by iteratively passing messages �locally calculated con-
ditional probabilities� between variables. Iterative message
passing of this type is guaranteed to converge to the globally
correct estimate when the system is treelike; there are no
such guarantees for systems with loops even in the case of
large loops and a local treelike structure �although message
passing techniques have been used successfully in loopy sys-
tems, supported by some limited theory �14��. A clear link
has been established between certain message passing algo-
rithms and well-known methods of statistical mechanics �2�
such as the Bethe approximation �15,16�.

These inherent limitations seem to prevent the use of mes-
sage passing techniques in densely connected systems due to
their high connectivity, implying an exponentially growing
cost, and an exponential number of loops. However, an ex-
citing new approach has been recently suggested �6� for ex-
tending BP techniques �3–5� to densely connected systems.
In this approach, messages are grouped together, giving rise
to a macroscopic random variable, drawn from a Gaussian
distribution of varying mean and variance for each of the
nodes. The technique has been successfully applied to
CDMA signal detection problems and the results reported are
competitive with those of other state-of-the-art techniques.
However, the current approach has some inherent limitations
�6�, presumably due to its similarity to the replica symmetric
solution in the equivalent Ising spin models �1,7�.

In a separate recent development �17�, the replica-
symmetric-equivalent BP has been extended to survey propa-

gation �SP�, which corresponds to one-step replica symmetry
breaking in diluted systems. This new algorithm, motivated
by the theoretical physics interpretation of such problems,
has been highly successful in solving hard computational
problems �17�, far beyond other existing approaches. In ad-
dition, the algorithm facilitated theoretical studies of the cor-
responding physical system and contributed to our under-
standing of it �18�. The SP algorithm has recently been
modified to handle Ising and multilayer perceptrons �19�.

IV. GENERAL FORMALISM

We recently presented an approach �8� for inference in
densely connected systems, which was inspired by both the
extension of BP to densely connected graphs and the intro-
duction of SP. The systems we consider here are character-
ized by multiplicity of pure states and a possible fragmenta-
tion of the space of solutions. To address the inference
problem in such cases we consider an ensemble of replicated
systems where averages are taken over the ensemble of po-
tential solutions. This amounts to the presentation of a graph,
where the observables y� are linked to variables in all repli-
cated systems, namely B= �b1 ,b2 , . . . ,bn�; where ba

= �b1
a ,b2

a , . . . ,bK
a �T, as shown in Fig. 2. To estimate the vari-

ables B given the data yT= �y1 ,y2 , . . . ,yN�, in a Bayesian
framework, we must maximize the posterior P�B �y�
��=1

N P�y� �B�P�B�, where we have considered independent
data, and thus P�y �B�=�=1

N P�y� �B�.
The likelihood so defined is of a general form; the explicit

expression depends on the particular problem studied. Here,
we are interested in cases where b� 
±1�K is an unbiased
vector and P�B�=2−Kn. The estimate we would like to obtain

is the maximizer of the posterior marginal �MPM� b̂k
=argmaxbk�
±1�n�
bl�k�P�B �y�, which is expected to be a

vector with equal entries for all replica b̂k
1= b̂k

2= ¯ = b̂k
n. The

number of operations required to obtain the full MPM esti-
mator is of O�2K� which is infeasible for large K values.

To obtain an approximate MPM estimate we apply BP
message passing technique �3–5�. In particular we are inter-
ested here in the application of BP to densely connected
graphs, similar to the one presented in �6�. The latter is based
on estimating a single solution and therefore does not con-
verge, as has been observed, when the solution space be-
comes fragmented and multiple solutions emerge. This argu-
ably corresponds to the replica symmetry breaking
phenomena and occurs, for instance, when the noise level is
unknown in the CDMA signal detection case.

b b b b b b b b b1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 n n n..... .....

.....
1 2 3 Ny y y y

FIG. 2. Replicated solutions B= �b1 ,b2 , . . ,bK� given data.
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A potential algorithmic improvement is achieved by the
introduction of an SP-like approach, based on replicated
variable systems, similar to the approach taken in problems
that can be mapped onto sparsely connected graphs.

Using Bayes rule one straightforwardly obtains the BP
equations

Pt+1�y��bk,
y����� = �

bl�k�

P�y��B�
l�k

Pt�bl�
y����� , �3�

Pt�bl�
y����� � 
���

Pt�y��bl,
y����� . �4�

For calculating the posterior P�y �B�, we assume a depen-
dency of the data on the parameters of the form y�

=F��l=1
K ��lbl ;��, where F is some general smooth function,

� are model parameters and ��l are small enough to ensure
that �l=1

K ��lbl
a�O�1�. We define the vector ����l=1

K ��lbl

=�l�k��lbl+��kbk=��k+��kbk, where the index k indicates
that the contribution of the bk component has been taken out.
Thus, using y�=F���k+��kbk ;�� and separating the contri-
bution of bk, we can express the likelihood with the help the
k-dependent integration variable ��k �for any k� such that

P�y��B� =� d��kP�y�,��k�B;��

=� d��kP�y����k,B;��P���k�B�

=� d��kP�y����k + ��kbk;��P���k�B�

� � d��k�1 + ��kbk
T���k

ln P�y����k;���

	P�y����k;��P���k�B� , �5�

where we have assumed that P�y� ���k ,B ;��� P�y� ���k

+��kbk ;��, due to the assumed dependence of the observed
values y� on ��k and bk.

A. Interreplica correlations

An explicit expression for interdependence between solu-
tions is required for obtaining a closed set of update equa-
tions. We assume a dependence of the form

Pt�bk�
y����� � exp
h�k
tT bk + 1

2bk
TQ�k

t bk� , �6�

where h�k
t is a vector representing an external field and Q�k

t

the matrix of cross-replica interaction. The form of Q�k
t de-

pends upon the particular case considered. We assume one of
the following symmetry relation between the replicated so-
lutions:

�h�k
t ��a = h�k

t ,

��RS�Q�k
t �aa� = 
aa�q0�k

t + �1 − 
aa��q1�k
t ,

��1RSB�Q�k
t ��a��a� = 
�����RS�Q�k

t �aa� + �1 − 
����q2�k
t ,

where � is a block index that runs from 1 to L and a is a
intrablock replica index that runs form 1 to n where n is the
number of variables per block. We also make the following
reasonable assumption q0�k

t �q1�k
t �q2�k

t �0, as one expects
correlations to gradually decrease between variables with
nonidentical replica and block indices, respectively.

For both types of symmetries considered, the correlation
matrix defined as

���k
t �II� � ���k

I ��k
I� � − ���k

I ����k
I� � ,

where I is an index or a pair of indices for RS and 1RSB,
respectively. The correlation matrix is assumed to be self-
averaging, i.e., ��k

t ��t and preserves the symmetry of the
matrix Q�k

t . An explicit derivation of the entries of �t is
presented in Appendixes A and B, for the RS and RSB-like
correlation structures, respectively; the matrices take the fol-
lowing general form:

��RS��t�aa� = 
aa�Xt + �1 − 
aa��
1

n
Rt,

��1RSB��t�a�a��� = 
����
aa�Xt + �1 − 
aa��
1

n
Vt	

+ �1 − 
����
1

nL
�Vt − Rt� .

Thus, for the appropriate center of the distribution u�k
t �see

Eqs. �A8� and �B13��, the probability of ��k can be ex-
pressed as

P���k�B� =� 1

�2��n det��t�
exp�−

1

2
���k − u�k

t �T��t�−1���k − u�k
t ��

� � � d exp�− n
� − u�k

t �2

2Rt 	
a=1

n

exp�−
���k

a − �2

2Xt 	 �RS� ,

� d�
�=1

L

exp�−
n

2
� �0�2

Vt − Rt +
���2

Vt − L−1�Vt − Rt�	�a=1

n

exp�−
���k

�a − �k
0�t�2

2�Xt − n−1Vt�
	 �RSB� ,� �7�
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for the RS and RSB-like correlation matrices, respectively,
where �k

0�t�0+�+u�k
t and �T= �0 ,1 , . . . ,L�.

B. Messages

Having obtained the conditional probability distribution
P���k �B� one can then derive explicit expressions for the
messages m�k �magnetization� and m̂�k that can be viewed as
parameters in the corresponding marginalized binary distri-
butions Pt�y� �bk , 
y������ �1+ m̂�k

t bk� /2 and Pt�bk � 
y�����
= �1+m�k

t bk� /2.
The messages from nodes y� to nodes bk, as derived in

Appendix C, Eqs. �C1�–�C8�,

m̂�k
t+1 = ���k

̃�k
t − u�k

t

Rt
�RS� ,

��k

̃�k
t − u�k

t

2Vt − Rt +
��k

2n

P2Vt

1 − P1Vt
�RSB� ,� �8�

where P j = � � jP
� j �=̃

�k
t , P is defined in Eq. �C3� and ̃�k

t is
obtained from the saddle point equations given by Eq. �D1�
in the RS case and by Eq. �D2� in the 1RSB case. The mes-
sages from nodes bk to y� are given in both cases by the
expression m�k

t � tanh�����m̂�k
t �.

For the gauged field bkh�k
t where h�k

t � arctanh�m�k
t �

=����arctanh�m̂�k
t ������m̂�k

t . The distribution of this field
is well approximated by a Gaussian as a result of the central
limit theorem. The mean and variance of the Gaussian are Et

and Ft, respectively,

Et =
1

K
�
k=1

K

�
�=1

N

bkm̂�k
t ,

Ft = �
�=1

N � 1

K
�
k=1

K

�bkm̂�k
t �2 − � 1

K
�
k=1

K

bkm̂�k
t 	2�

�
1

K
�
k=1

K

�
�=1

N

�m̂�k
t �2. �9�

Both Et and Ft are assumed to be independent of the index �
by virtue of the self-averaging property. For the same reason
we expect the macroscopic variables defined as M�

t

��k=1
K bkm�k

t /K��k=1
K bkmk

t /K=Mt and N�
t ��k=1

K �m�k
t �2 /K

��k=1
K �mk

t �2 /K=Nt, where mk
t � tanh���=1

N m̂�k
t �, to be inde-

pendent of the index �. Thus, these macroscopic variables
can be evaluated by the following integrals:

Mt =� Du tanh��Ftu + Et�, Nt =� Du tanh2��Ftu + Et� ,

where Du=du exp�−u2 /2� /�2� represents the product of a
differential �du� times a probability distribution �Gaussian�.

C. Optimization

The structure of the correlation matrix used introduces
free variables in the form of the correlation terms between

replicated solutions. These are used for optimizing the esti-
mation provided with respect to a given performance mea-
sure.

Since the MPM estimator is given by b̂k
t =sgn�mk

t �
�sgn�m�k

t �=sgn�h�k
t �, the expression for the error per bit

rate takes the form

Pb
t =

1

2K
�
k=1

K

�1 − sgn�bkmk
t �� , �10�

which is minimized when the true message vector b and the
vector of messages mt are parallel. Therefore, the error rate

per bit decreases as the ratio Mt /�Nt=cos�bmtˆ � increases.
The optimal value is reached when Et��c�=Ft��c� and � �Et

��i

− 1
2

Et

Ft
�Ft

��i
��i

c =0 as derived in Appendix E.

V. CDMA AND LINEAR ISING PERCEPTRON

Using this notation one defines ��k=s�k /�N for the
CDMA problem and ��k=s�k /�K for the Ising perceptron.
The goal is to get an accurate estimate of the vector b for all
users given the received message vector y via a principled
approximation of the posterior P�b �y�. An expression repre-
senting the likelihood is required and is easily derived from
the noise model �assuming zero mean and variance �2�. If
the arithmetic variance over replicas of the macroscopic mes-
sage ��k

a is finite and independent of the subindexes � and k,
i.e., �2� 1

n�a���k
a �2− � 1

n�a��k
a �2

��∀�k, then P�y� �B� can
be expanded as

P�y��B� �� n

2��2e�2/2�2
exp�−

�y� − ��k�T�y� − ��k�
2�2 	

	�1 +
��k

�2 bk
T�y� − ��k�	 , �11�

where y�=y�u and

uT��1,1 , . . . ,1�

nL

. The function P�� ,y��, defined in Eq.
�C4�, and obtained from this distribution is linear in �; there-
fore, the second derivative used for calculating the messages
in Eq. �8� P2=0 and the corresponding structure of the cor-
relation matrix is RS-like.

To calculate correlations between replica we expand
P�y� �B� in the large N limit in �11�, as shown in Eq. �5�.
According to the RS correlation assumption, the macro-
scopic variables satisfy the following relation:

u�k
t =

1
�e1N

�
l�k

s�lm�l
t ,

Xt � e2�1 − Nt� ,

where e1=1��� for the CDMA �ILP� system and e2=��1� for
the CDMA �ILP� systems, respectively, due to the change in
scaling. The saddle point equation �C6� provides a dominant
value for the variable ,
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̃ =
Rt

�2 + Xt + Rt� �2u�k
t

Xt + Rt + y�	 .

A. Message

The message from y� to bk
a at time t+1 is then given by

m̂�k
t+1 = ��k

y� − u�k
t

�2 + Xt + Rt . �12�

The main difference between Eq. �12� and the equivalent
equation in �6� is the dependence of the prefactor on Rt,
reflecting correlations between different solution groups
�replica�. To determine this term we optimize the choice of
�2 by applying the condition Et=Ft. Forcing this condition
leads to a relation between the structure of the space of so-
lutions, represented by Rt, and the free parameter of the
model �2. From Eq. �12� and using Et=Ft and Mt=Nt one
obtains

Et+1 =
e1

−1

�2 + Xt + Rt , Ft+1 = e1��0
2 + Xt��Et+1�2,

which imply, after simplification, that for both cases Rt=�0
2

−�2. Despite the simplicity of this result, the process from
which we obtained it provides us with a practical way to
estimate the true noise variance. Notice that for calculating
Et and Ft we used the limits K ,N→� with K /N=�. So that
�0

2, which appears in the expression for Ft, can be obtained
from the signal vector of y� with an infinite number of en-
tries. Thus

lim
N→�

1

N �
�=1

N

�y��2 = e2 + �0
2.

Using this expression we can finally express the message as

m̂�k
t+1 � ��k

y� − u�k
t

1

N �
�=1

N

�y��2 − e2Nt

, �13�

where no prior belief of � is required.

B. Steady state and critical analysis

The steady state equations for the macroscopic variables
Nt and Et are obtained by taken the limit t→�. Let us define

N̄� limt→� Nt and Ē� limt→� Et. In the asymptotic regime
the following relations hold:

N̄��0
2,�� =� Du tanh2��Ē��0

2,��u + Ē��0
2,��� ,

Ē��0
2,�� =

e1
−1

�0
2 + e2�1 − N̄��0

2,���
�14�

and from these expressions one can obtain the full expression
for the error per bit rate,

P̄b��0
2,�� =

1

2
�1 + erf��Ē��0

2,��
2

	� . �15�

C. CDMA signal detection—numerical results

The inference algorithm requires an iterative update of
Eqs. �C9� and �13� and converges to a reliable estimate of the
signal, with no need for prior information of the noise level.
The computational complexity of the algorithm is of O�K2�.

To test the performance of our algorithm we carried out a
set of experiments of the CDMA signal detection problem
under typical conditions. Error probability of the inferred
signals was calculated for a system load of �=0.25, where
the true noise level is �0

2=0.25 and the estimated noise is
�2=0.01, as shown in Fig. 3�a�. The solid line represents the
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FIG. 3. �Color online� �a� Error probability of the inferred solution evolving in time. The system load �=0.25, true noise level �0
2

=0.25, and estimated noise �2=0.01. Squares represent results of the original algorithm �6�, solid line represents the dynamics obtained from
our equations; circles represent results obtained from the suggested practical algorithm. Variances are smaller than the symbol size. �b� Dt,
a measure of convergence for the obtained solutions, as a function of time; symbols are as in �a�.
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expected theoretical results �density evolution�, knowing
the exact values of �0

2 and �2, while circles represent simu-
lation results obtained via the suggested practical algorithm,
where no such knowledge is assumed. The results presented
are based on 105 trials per point and a system size N=2000
and are superior to those obtained using the original algo-
rithm �6�.

Another performance measure one should consider is

Dt �
1

K
�mt − mt−1� · �mt − mt−1� ,

that provides an indication to the stability of the solutions
obtained. In Fig. 3�b� we see that results obtained from our
algorithm show convergence to a reliable solution in contrast
to the original algorithm �6�. The physical interpretation of
the difference between the two results is assumed to be re-
lated to a replica symmetry breaking phenomenon.

D. Ising linear perceptron—numerical results

For the ILP, the K�N regime of high interest as the sys-
tem develops a critical behavior for a range of �0

2 values. We
carried out a set of experiments for this system based on
density evolution. In Fig. 4�a� we present curves of the bit

error probability P̄b, defined in Eq. �15�, as a function of the
inverse load �−1 for different values of �0

2. Three different
regimes have been observed: For �0

2�0.1025 the curves ex-
hibit a discontinuity at a value of � that varies with �0

2 �first-
order phase-transitionlike behavior�. At �0

2=0.1025 the curve
becomes continuous but its slope diverges �second-order

phase-transition-like behavior�. The P̄b curves show analyti-
cal behavior for noise values above 0.1025. Figure 4�b� ex-
hibits a phase diagram of the ILP system; it shows the de-
pendency of the critical load �C

−1 as a function of the noise
parameter. The first-order transition line ends in a second-
order transition point marked by a circle. The results ob-

tained, and in particular the critical � value, are consistent
with those derived using the replica symmetric statistical
mechanics-based analysis of the problem �13�.

Another indication for the critical behavior is the number
of steps required for the recursive update of Eq. �14� to con-
vergence. In Fig. 5�a� we present the number of iterations
required to reach a steady state as a function of �−1 when the
noise parameter is set to �0

2=0.1. The number of iterations
diverges when the critical value of � is reached.

Finally, we wish to explore the efficiency of the algorithm
as a function of the system size. In Fig. 5�b� we present the
result of iterating equations �C9� and �13� for a system size
of K=500. The curve presents mean values and error bars
over 1000 experiments. There is a strong dependency of the
error per bit rate on the size of the system, which is expected
to converge to the asymptotic limit �infinite system size� rep-
resented by the solid line.

VI. CDMA SIGNAL DETECTION WITH DUAL-PEAKED
GAUSSIAN NOISE

To demonstrate the suitability of the method for more
complex inference problems that require a system with
1RSB-like structures, we will consider the CDMA signal of
Eq. �1� where the noise n� is drawn from a bi-Gaussian
distribution

P�n�� =
1 − r0

2

1
�2�

exp�−
�n� + �0/�0�2

2
	

+
1 + r0

2

1
�2�

exp�−
�n� − �0/�0�2

2
	 , �16�

where r0� �−1,1� represents the bias and ±�0 /�0 the posi-
tions of the Gaussian peaks. We consider the particular case
where ��0 /�0��1, so that the Gaussian peaks are slightly off
center. For this model the likelihood expression takes the
form
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FIG. 4. �a� The error probability P̄b at the steady state, Eq. �15�, as a function of �−1 for different values of the noise parameter. For
values of �0

2 below 0.1025 the curves show discontinuity at certain � values, which becomes continuous but nonanalytic at �0
2=0.1025

around �−1�0.68. For noise variance values above �0
2=0.1025 the curves become analytical. �b� Position of the nonanalyticity of the error

rate curve �C
−1 as a function of the noise parameter �0

2. This first-order phase-transitionlike curve ends in a second-order phase-transitionlike
point marked by ���.
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P�y����;r,�,�2� � 
�=1

L


a=1

n �1 − r

2
exp�−

�y� − ��
�a + ��2

2�2 	
+

1 + r

2
exp�−

�y� − ��
�a − ��2

2�2 	� ,

where r, �, and �2 are estimates of the true parameters r0, �0,
and �0

2.
To derive the messages in this case we first calculate the

function P� ,y�� of Eq. �C4�, which has the form

P�,y�� =
y� − 

�2 + Xt −
�

�2 + Xt tanh��
y� − 

�2 + Xt + arctanh�r�	 ,

where Xt=��1−Nt�.
Following the derivation of Appendix C, the saddle point

equations �D1� and �D2� can be expressed as

̃�k
t = u�k

t + WtP�̃�k
t ,y�� ,

y� − ̃�k
t = y� − u�k

t − Wt y� − ̃�k
t

�2 + Xt

+ �
Wt

�2 + Xt tanh��
y� − ̃�k

t

�2 + Xt + arctanh�r�	 ,

y� − ̃�k
t

�2 + Xt =
y� − u�k

t

�2 + Xt + Wt +
�

�2 + Xt

Wt

�2 + Xt + Wt

	tanh��
y� − ̃�k

t

�2 + Xt + arctanh�r�	 ,

z = �W�y� − u�k
t � + ���0 − �W�tanh��z + arctanh�r��

� z0 + r��W� + �1 − r2��1 − 3r2���Wz�2

− r�1 − r2���Wz2�3 −
1

3
�1 − r2��1 − 3r2���Wz3�4,

where we denote Wt=Rt for the RS case and Wt=2Vt−Rt for

the 1RSB case, z�
y�−̃�k

t

�2+Xt , �A���2+Xt+A�−1, z0��W�y�

−u�k
t �, and ��W��0−�W.
The solution of this equation provides, up to order O��4�,

z��� � z0 + r��W� + �1 − r2���W�z0�2 + r���W − z0
2��3

+ �1 − 3r2�z0���W − 1
3z0

2��4� .

The function P and its two first derivatives at the saddle
point value are

P0 = − r�1 + �1 − r2���W�2��W� + �1 − �1 − r2��W
2 �2

− �1 − r2��1 − 3r2���W�W
2 �4�

	�y� − u�k
t � + r�1 − r2��W

3 �y� − u�k
t �2�3

+ 1
3 �1 − r2��1 − 3r2��W

4 �y� − u�k
t �3�4,

P1 � − �0 + O��2� ,

P2 = 2�0
3�1 − r2��r�3 + �1 − 3r2��W�y� − u�k

t ��4� ,

therefore, one can obtain the following expression, required
for calculating the messages in the 1RSB case �C8�:

1

2

P2Vt

1 − P1Vt = �1 − r2��0��V�r�3 + �1 − 3r2��W�y� − u�k
t ��4� ,

where ��V��0−�V. This straightforwardly leads to the fol-
lowing expression for the message:
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FIG. 5. �Color online� �a� Number of iterations of Eq. �14� required for convergence as a function of �, for �0
2=0.10; one clearly

identifies the � value where the error rate curve exhibits a discontinuity. �b� Finite size effects are observed at all � values. The noise level
used is �0

2=0.10 with K=500. The curves provide mean values and error bars over 1000 experiments. The solid curve obtained from the
iteration of the steady state equations is presented as a reference.
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�1RSB�m̂�k
t+1 =

s�k

�N
�− ��W + �1 − r2���n − �W

2 ��2�r� + �W�1 − �1

− r2��W�2 − �1 − r2��1 − 3r2���n − �W
2 ��4��y�

− u�k
t � + r�1 − r2��W

3 �3�y� − u�k
t �2 +

1

3
�1 − r2��1

− 3r2��W
4 �4�y� − u�k

t �3	 , �17�

where �n��0��W− 1
n��V�. The expression for the message in

the RS case is recovered from Eq. �17� in the limit n→�.

A. Optimization and messages

Calculating the expressions for the macroscopic variables
Et+1 and Ft+1, used in the optimization process, requires per-
forming the following sums, in the limit of K ,N→� with
K /N=���:

Aj � lim
K,N→�

�
�

N
1

K�
k=1

K
s�kbk

�N
�y� − u�k

t � j ,

Bl � lim
K,N→�

1

N�
�

N
1

K�
k=1

K

�y� − u�k
t �l,

where j=0, . . . ,3 and l=0, . . . ,4. From the definition of the
signal y� �1� and the expression for the noise �16� we find
that A0=0, A1=1, A2=2B1, A3=3B2, B0=1, B1=r0�0, B2
=��1−2Mt+Nt�+�0

2+�0
2, B3=B1�3B2−2�0

2�, and B4=3B2
2

−2�0
4. The explicit expressions derived for the macroscopic

variables are

Et+1 = �W − �1 − r2��W
2 �2 + 2r�1 − r2�B1�W

3 �3

− �1 − r2��1 − 3r2���n − �1 + B2�r��W
2 ��W�4,

Ft+1 = B2�W
2 − 2rB1�W

2 � + �r2 − 2�1 − r2�B2�W��W
2 �2

− 2r�1 − r2�B1��n − �2 + 3B2�W��W
2 ��W�3

+ �1 − r2��2r2��n − �W
2 ��W + �1 − 3r2�

	B2�3�W
2 + 2B2�W

3 − 2�n��W
2 ��4.

Applying the optimization conditions of Appendix E,
Et��c�=Ft��c� and �Et

��i
− 1

2
Et

Ft �
�Ft

��i
��i

c =0, where �T= �r ,� ,�2 , 1
n

�
one obtains the following conditions:

�W =
1

B2
+

�2

B2
2 −

�4

B2
3 + �1 − r2�2

1 − B2�0�1 −
1

n
B2��V	

B2
3 �4

�18�

r� = B1 + r�1 − r2�
1 − B2�0�1 −

1

n
B2��V	

B2
�3. �19�

In the 1RSB case one can further simplify these expres-
sions by a suitable choice of Vt and the number of replicas

per block n. Optimization with respect to the latter results in

1 = B2�0�1 −
1

n
B2��V	 , �20�

which implies

Vt =
�Xt + �2�2��0

2 − �2�
1

n
�Xt + �0

2�2 − �Xt + �2���0
2 − �2�

,

that by definition is larger than zero. This condition is satis-
fied if our estimate for the noise variance is smaller than the
true parameter ��2��0

2�. In this case the number of replicas
per block must satisfy the condition

1 � n � f�Xt;�0
2,�2� �

�Xt + �0
2�2

�Xt + �2���0
2 − �2�

.

Interestingly this ties the noise level mismatch to the number
of replicas, thus giving further insight to the role played by
the structure of the inter-replica correlation matrix.

For 0�Xt, the minimum value of f�Xt ;�0
2 ,�2� is reached

at Xmin=max�0,�0
2−2�2�. It is also possible to prove that 4

� f�Xmin ;�0
2 ,�2�. Although Vt and n will not be explicitly

used in the following expressions, the correct choice of the
value for these parameters allows one to use Eqs. �18� and
�19� in order to find the final expression for the macroscopic
variable Et+1, where no estimates are needed for the noise
parameters:

�1RSB�Et+1 =
1

B2 − B1
2 .

Note that in the RS case we do not have the freedom to
choose the number of replicas per block, given that this case
is equivalent to take n→� in the absence of the additional
replica l=1, . . . ,L. For this reason Eqs. �18� and �19� take the
form

�W =
1

B2
+

�2

B2
2 −

�4

B2
3 + �1 − r2�21 − B2�0

B2
3 �4, �21�

r� = B1 + r�1 − r2�
1 − B2�0

B2
�3, �22�

and the macroscopic variable

�RS�Et+1 = �1RSB�Et+1 +
2B1

2��2 − B1
2�

B2
3 � B2

Xt + �2 − 1	 ,

which depends on both estimates of the noise variance �2

and bias �.
Given that the algorithm deals with finite signal vectors

�N���, the quantities B1 and B2 must be approximated by
the correspondent finite sums. Therefore, we have

B1 = lim
N,K→�

1

N �
�=1

N
1

K�
k=1

K

�y� − u�k
t � �

1

N
�
�=1

N

y� � B̄1,

�23�
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B2 = lim
N,K→�

1

N �
�=1

N
1

K�
k=1

K

�y� − u�k
t �2 �

1

N
�
�=1

N

y�
2 + �Nt � B̄2,

where we used the fact that limN,K→�
1

NK��,ku�k
t =0. Observe

that no information about the true noise has been used to
derive these expressions.

Having the estimates �23� we can write the messages ex-
plicitly,

�1RSB�m̂�k
t+1 =

s�k

�N
�−

B̄1

B̄2

+
B̄1

B̄2
2
�2 + � 1

B̄2

+
B̄1

2

B̄2
2

−
3�2 − 2B̄1

2

B̄2
3

�2	
	�y� − u�k

t � +
B̄1��2 − B̄1

2�

B̄2
3

�y� − u�k
t �2

+
1

3

��2 − B̄1
2���2 − 3B̄1

2�

B̄2
4

�y� − u�m
t �3� ,

�RS�m̂�k
t+1 = �1RSB�m̂�k

t+1 +
s�k

�N
�1 −

B̄2

Xt + �2	�2 − B̄1
2

B̄2
2

	�B̄1 + 2
�2 − 2B̄1

2

B̄2
2

�y� − u�k
t �	 ,

which can be now used recursively for obtaining the inferred
solutions for this problem. Notice that an estimate of both �
and � in required in the RS case.

B. Numerical results

To test the performance of the 1RSB algorithm we carried
out a set of experiments of the CDMA signal detection prob-
lem with bi-Gaussian noise. The results shown in Fig. 6�a�
describe the error probability of the inferred signals as a
function of the number of iterations has been calculated us-
ing both RS and 1RSB-like correlation matrices for the case
of parameters mismatch. The system load used in the simu-

lations was �=0.25, the true noise level �0
2=0.25, Gaussian

bias of �0=0.06 and weight r0=0.6. The estimated noise pa-
rameters are �2=0.01 and �=0.2. The circles represent simu-
lation results obtained via the 1RSB algorithm while the
squares correspond to the RS-like structure. The results pre-
sented are based on 105 trials per point and a system size
N=1000; error bars are also provided. The results obtained
using the 1RSB-like structure are superior to those obtained
using the RS algorithm. As shown in Fig. 6�b� using the
stability measure Dt, both RS and 1RSB-based algorithms
converge to reliable solutions; the 1RSB-based algorithm is
slightly slower to converge, presumably due to the more
complex message passing scheme.

VII. CONCLUSIONS

We present and methodologically develop an algorithm
for using BP in densely connected systems that enables one
to obtain reliable solutions even when the solution space is
fragmented. The algorithm relies on the introduction of a
large number of replicated variable systems exposed to the
same evidential nodes. Messages are obtained by averaging
over all replicated systems leading to pseudoposterior, that is
then used to infer the variable nodes most probable values.
This is done with no actual replication, by introducing an
assumption about correlations between the replicated vari-
ables and exploiting the high number of replicated systems.
The algorithm was developed in a systematic manner to ac-
commodate more complex correlation matrices. It was suc-
cessfully applied to the CDMA signal detection and ILP
learning problems, using the RS-like correlation matrix, and
to the CDMA inference problem with bimodal Gaussian
noise model in the 1RSB-like correlation matrix. The algo-
rithm provides superior results to other existing algorithms
�6,20� and a systematic improvement where more complex
correlation matrices are introduced, where required.

Further research is required to fully determine the poten-
tial of the algorithm. Two particular areas which we consider
as particularly promising are inference problems character-
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FIG. 6. �Color online� �a� Error probability of the inferred solution evolving in time, for the bi-Gaussian noise case. The system load
�=0.25, true noise level �0

2=0.25 and estimated noise �2=0.01. Squares represent results of the RS algorithm and circles represent results
obtained from the 1RSB algorithm. �b� Dt, a measure of convergence in the obtained solutions, as a function of time; symbols are as in �a�.
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ized by discrete data variables and noise model and problems
that can be mapped onto sparse graphs. Both activities are
currently underway.
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APPENDIX: A THE REPLICA SYMMETRIC ANSATZ

Within the RS setting, the interaction term in Eq. �6� is

bk
TQ�k

t bk = n�q0�k
t − q1�k

t � + q1�k
t ��

a=1

n

bk
a	2

,

A simplified expression for Eq. �6� immediately follows

Pt�bk�
y����� = �Z�k
t �−1 exp�h�k

t �
a=1

n

bk
a +

1

2
q1�k

t ��
a=1

n

bk
a	2�

= �Z�k
t �−1�

−�

�

dx exp�−
x2

2q1�k
t

+ �x + h�k
t ��

a=1

n

bk
a� ,

where Z�k
t is a normalization constant. The diagonal ele-

ments q0�k
t only affect the normalization term and can there-

fore be taken to zero with no loss of generality.
We expect the logarithm of the normalization term Z�k

t

�linked to the free energy�, obtained from the well-behaved
distribution Pt, to be self-averaging. We therefore expect

lim
n→�

1

n
ln�Z�k

t � = lim
n→�

1

n
ln�Z�k

t �ĥ, q̂1�� ,

where ĥ and q̂1 are the mean values of the parameters drawn
for some suitable distributions and the overline represents
the mean value of the partition function over these distribu-
tions.

In the following we will drop the upper-index t and the
subindices � and k for brevity. To obtain the scaling behavior
of the various parameters one calculates Z�h ,q1� explicitly,
assuming the parameter q1 is taken from a normal distribu-
tion N�q̂1 ,�q

2�. The partition function takes the form

Z�h,q1� = �
−�

� dx
�2�q1

exp�−
�x − h�2

2q1
+ n ln�2 cosh�x��	 .

�A1�

Thus, the mean value of the partition function over the set of
parameters is

Z�h,q1� =� Dq1Z�h,q1� ,

where Dq1=dq1N�q̂1 ,�q1

2 �. The normalization can be ex-
pressed as

Z�h,q1� = �
a=0

n �n

a
	exp�n�h�1 −

2a

n
	 +

q̂1

2
�1 −

2a

n
	2

n

+
�q1

2

8
�1 −

2a

n
	4

n3�� = A�n��n + 1�

	� n

n/2
	exp�n��h� + n

q̂1

2
+ n3

�q1

2

8
	�

�� 2

�
A�n�exp�n�ln�2� + �h� + n

q̂1

2
+ n3

�q1

2

8
	� ,

where A�n��O�1�. Thus, h�O�1�, q̂1�O�n−1�, and �q1

2

�O�n−3�. From now on we will take the off-diagonal ele-
ments of the RS matrix Q�k

t equal to g1�k
t /n, where g1�k

t

�O�1�.
The form of the marginalized posterior at time t is then

Pt�bk�
y����� =

�
−�

�

dx exp�− n
�x − h�k

t �2

2g1�k
t + x�

a=1

n

bk
a	

�
−�

�

dx exp
− n��x;h�k
t ,g1�k

t ��
,

�A2�

where

��x;h�k
t ,g1�k

t � =
�x − h�k

t �2

2g1�k
t − ln�2 cosh�x�� .

The function ��x ;h ,g1� presents one or two minima accord-
ing to the following:

h g1 Number of minima

h�R 0�g1�1 one minima

�h�=hc g1�1 one minima and one hump

�h��hc g1�1 two minima

where hc=�g1�g1−1�−cosh−1��g1�; the coefficient g1 plays
the role of the inverse temperature. Below the critical value
g1c=1 a spontaneous magnetization appears.

This results from analyzing the equation

���x;h,g1�
�x

=
x − h

g1
− tanh�x� = 0. �A3�

The case of two maxima is presented in Fig. 7.
We define the mean values from the distribution equa-

tion �A2�. If the field h is not zero, as shown in Fig. 7,
�exp�−���n develops one dominant maximum as n→�. For
large enough n, only this maximum contributes to the inte-
grals �A2� and the algorithm obtained from this assumption
turns out to be the same as the one presented in �6�. How-
ever, if the field is sufficiently small it gives rise to a regime
where the two maxima contribute. At the same time, it is
important to note that a small, nonzero field favors the solu-
tion of Eq. �A3� that satisfies sgn�x�=sgn�h�. To analyze the
behavior of the field, we will explore the solutions of Eq.
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�A3� in the regime 0� �h��1. With this aim, suppose that the
solutions for Eq. �A3� at zero field are x0= ±g1�m� where m
� tanh�x0� and sgn�m�=sgn�h�. If the field is sufficiently
small one can expand the solutions of Eq. �A3� as x±h
= ±g1m+��m ,g1�h where ��m ,g1�h is expected to be small
and satisfies sgn���m ,g1�h�=sgn�h�. Observe that if the field
is positive �negative�, both roots are displaced to the right
�left� with respect to the zero field solutions. Using this ex-
pression for the roots in Eq. �A3� and disregarding terms of
O�h2� one finds that

��m,g1� =
1

1 − g1�1 − m2�
. �A4�

The expression for the exponent � near the roots and in the
0� �h��1 regime is then ��x±h ;h→0,g1�
���x0 ;0 ,g1��mh=�0�mh, and, by the definition of the
m, the product mh is positively defined.

Let us define �±h�m ,g1���1−m2��1�2��m ,g1�mh�. We
expect that, for large n, the following approximation is valid:

exp
− n��x;h → 0,g1�� � e−n�0�enmh exp�−
n

2
�g1

−1

− �h�m,g1���x − xh�2	 + e−nmh exp�−
n

2
�g1

−1

− �−h�m,g1���x − x−h�2	� . �A5�

Using Eq. �A5� one can calculate the normalization in Eq.
�A1�,

Z�h → 0,g1� � e−n��0−mh� � dx exp�−
n

2
�g1

−1 − �h�m,g1���x

− xh�2	 + e−n��0+mh� � dx exp�−
n

2
�g1

−1 − �−h�m,g1��

	�x − x−h�2	 ��2�g1��m,g1�
n

e−n�0
enmh�1 − g1�1

− m2��2�m,g1�mh� + e−nmh�1 + g1�1

− m2��2�m,g1�mh�� . �A6�

The mean value of a given function f�x� with respect to the
conditional probability distribution defined in Eq. �A2� is
then

�f�x��h → 0,g1� � Z−1e−n��0−mh� � dx exp�−
n

2

g1

−1

− �1 − m2��1 − 2��m,g1�mh���x − xh�2	
	� f�xh� + �x − xh�f��xh� +

1

2
�x − xh�2f��xh�	

+ Z−1e−n��0+mh� � dx exp�−
n

2

g1

−1 − �1 − m2�

	�1 + 2��m,g1�mh���x − x−h�2	� f�x−h� + �x − x−h�

	f��x−h� +
1

2
�x − x−h�2f��x−h�	 ,

which implies, considering that the integrals of the linear
terms are zero and keeping only the leading terms in the
expansions, that the expectation values takes the form

�f�x��h → 0,g1� � 
1 − e−2nmh�1 + 2�2�m,g1�mh��

	� f�xh� +
g1

2n
��m,g1�f��xh�	

+ e−2nmh�1 + 2�2�m,g1�mh�f�x−h� .

Considering the expansion of f�x±h�� f�±g1m+��m ,g1�h�
� f�±g1m�+��m ,g1�f��±g1m�h and disregarding terms of
O�he−2nmh�, one can write

�f�x��h → 0,g1� � f�mg1� +
g1

2n
��m,g1�f��mg1�

− e−2nmh�f�mg1� − f�− mg1�� + f��mg1���m,g1�h .

�A7�

The resulting one and two variable expectation values be-
come

�bk
a�h�k

t → 0,g�k
t � = �


bk�
Pt�bk�
y�����bk

a

= �tanh�x��h�k
t → 0,g1�k

t �

� �1 −
g1�k

t

n
�1 − �m�k

t �2���m�k
t ,g1�k

t �

− 2e−2nm�k
t h�k

t 	m�k
t + ��m�k

t ,g1�k
t ��1 − �m�k

t �2�h�k
t

and

�bk
abk

b�h�k
t → 0,g1�k

t � = Pt�bk�
y�����bk
abk

b

= 
ab + �1 − 
ab��tanh2�x��h�k
t → 0,g1�k

t � ,

where

x
-h

x
min

x
+h

-h/g

e
-Φ(x;h,g)

tanh(x)

(x-h)/g

FIG. 7. �Color online� Solutions for the mean field equation
�A3� with two maxima and one minimum for a positive value of the
field h.
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�tanh2�x��h�k
t → 0,g1�k

t � = �m�k
t �2 + ��m�k

t ,g1�k
t ��1 − �m�k

t �2�

	�g1�k
t

n
�1 − 3�m�k

t �2� + 2m�k
t h�k

t 	 ,

and

�bk
abl

b�h�k
t → 0,g1�k

t � = �bk
a�h�k

t → 0,g1�k
t ��bl

b�h�k
t → 0,g1�k

t � .

Thus, the leading terms for the covariance matrix of the rep-
licated variables are

���kl
t �ab � �bk

abl
b�h�k

t → 0,g1�k
t ;h�l

t → 0,g1�l
t � − �bk

a�h�k
t

→ 0,g1�k
t ��bl

b�h�l
t → 0,g1�l

t � = 
kl���k
t �ab

���k
t �ab � 
ab�1 − �m�k

t �2� + �1 − 
ab��g1�k
t

n
��m�k

t ,g1�k
t ��1

− �m�k
t �2�2 + 4e−2nm�k

t h�k
t

�1 − e−2nm�k
t h�k

t
��m�k

t �2	 .

If one requires the nondiagonal elements of this covariance
matrix to have the same scaling as the inter-replica interac-
tion matrix, the field must behave in such a way that the
exponential term contributes at most in O�n−1�. One thus
expects the field to obey m�k

t h�k
t �

1
n ln� 2n

n�k
t �, where the n�k

t are
appropriate constants. With this asymptotic behavior, the ex-
pression for the entries in the covariance matrix is

���k
t �ab � 
ab�1 − �m�k

t �2�

+ �1 − 
ab�
g1�k

t ��m�k
t ,g1�k

t �
n

�1 − �m�k
t �2�2,

which serves to define the probability distribution for the
macroscopic variable ��k

a =�l�k��lbl
a.

As ��k and bk
a are unbiased variables, the variable ��k

a , by
virtue of the central limit theorem, obeys a normal distribu-
tion, with mean value and covariance matrix given by �to
highest order�

�u�k
t �a � ���k

a � = �

bl�k�


l�k

Pt�bl�
y������
l�k

��lbl
a = �

l�k

��lm�l
t ,

�A8�

���k
t �ab � ���k

a ��k
b � − ��k

a���k
b�

= �

bl�k�


l�k

Pt�bl�
y����� �
l�k

j�k

��l��jbl
abj

b

− ��
l�k

��lm�l
t 	2

= �
l�k

��l
2 ���lj

t �ab

= 
abX�k
t + �1 − 
ab�

1

n
R�k

t ,

where

X�k
t � �

l�k

��l
2 �1 − �m�l

t �2� ,

R�k
t � �

l�k

��l
2 g1�l

t ��m�l
t ,g1�l

t ��1 − �m�l
t �2�2, �A9�

are macroscopic variables of O�1�. In particular, R�k
t is a free

variable that can be used later on to optimize a given perfor-
mance measure. This variables have the property of being
self-averaging, therefore we can drop the subindices � and k.

APPENDIX B: THE ONE-STEP REPLICA SYMMETRY
BREAKING ANSATZ

Under a solution correlation matrix that resembles the
1RSB structure, the system comprises nL variables, where
both the number of blocks L and the number of variables per
block n are considered large. As before we are interested in
the regime where L and n→�.

With this setting, the interaction term in Eq. �6� is now

bk
TQ�k

t bk = − q1�k
t nL + �q1�k

t − q2�k
t ��

�=1

L ��
a=1

n

bk
�a	2

+ q2�k
t ��

�=1

L

�
a=1

n

bk
�a	2

,

thus we have now L+1 squared sums in the exponent that
can be replaced by integrals

Pt�bk�
y����� = �Z�k
t �−1� dx exp�−

x0
2

2q2�k
t − �

�=1

L
x�

2

2�q�k
t

+ �
�=1

L

�x0 + x� + h�k
t ��

a=1

n

bk
�a	 ,

where �q�k
t �q1�k

t −q2�k
t �0 and xT= �x0 ,x1 , . . . ,xL�. Also

here we expect the logarithm of the normalization term
�linked to the free energy� obtained from the well-behaved
distribution Pt to be self-averaging, thus

lim
n→�

lim
L→�

1

nL
ln�Z�k

t � = lim
n→�

lim
L→�

1

nL
ln�Z�k

t �h�k
t ,q1�k

t ,q2�k
t �� ,

which is satisfied if the entries behave like q2�k
t �g2�k

t /nL
and �q�k

t �g1�k
t /n, where g1�k

t and g2�k
t �O�1�. Using this

scaled parameter, the expression for the normalization is
Z�k

t =�dx exp�−nL��x ;h�k
t ,g1�k

t ,g2�k
t �� where

��x;h�k
t ,g1�k

t ,g2�k
t � �

x0
2

2g1�k
t +

1

L
�
�=1

L
x�

2

2g2�k
t

−
1

L
�
�=1

L

ln�2 cosh�x0 + x� + h�k
t �� .

As before, we drop the indexes �, k, and t for brevity. The
critical points of the function ��x ;h ,g1 ,g2� satisfy the fol-
lowing set of equations:

��

�x0
=

x0

g1
−

1

L
�
�=1

L

tanh�x0 + x� + h� = 0,
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��

�x�

=
1

L
� x�

g2
− tanh�x0 + x� + h�	 = 0,

which are satisfied for the following values:

x0
* =

g1

g2

1

L
�
�=1

L

x�
* =

g1

g2
x*,

�B1�
x�

*

g2
= tanh�x�

* +
g1

g2
x* + h	 ,

where x*� 1
L��=1

L x�
*. The second equation in the set, Eq. �B1�,

has the same form for all �=1, . . . ,L and in the small field
regime it has at most three different solutions. From the three
possible solutions, one is a local maximum; of the other two,
the one that has the same sign as h is dominant. Thus we can
expect, for all �, x�

*=x*. This reduces the set of L+1 equa-
tions to one,

x*

g2
= tanh� G

g2
x* + h	 ,

where G�g1+g2. With the substitution u= �G /g2�x* the
equation has the same form as Eq. �A3�, i.e., u=G tanh�u
+h�. If one considers again the field h to be small, the solu-
tions can be expressed as an expansion of the zero field so-
lutions u±h� ±Gm+��m ,G�h, where ��m ,G� is given by Eq.
�A4�, and sgn�m�=sgn�h�. Using these expansions the criti-
cal values are given by x0,±h

* �g1�±m+G−1��m ,G�h� and
x�,±h

* �g2�±m+G−1��m ,G�h� for all �=1, . . . ,L.
As in the RS case, the expansion of � around the critical

points in the small field regime is ��x±h
* ;h→0,g1 ,g2�

���x0
* ;0 ,g1 ,g2��mh=�0�mh. So the dominant solution

is the one that shares the sign with the field.
For a sufficiently large system with nL variables, one ex-

pects the following expansion to be valid:

exp
− nL��x;h → 0,g1,g2�� � e−nL�0�enLmh exp�−
nL

2
�x

− xh
*�TH�,h�x − xh

*�	 + e−nLmh exp�−
nL

2
�x

− x−h
* �TH�,−h�x − x−h

* �	� , �B2�

where H�,±h is the Hessian of � in x±h
* .

Defining �±h��1−m2�
1�2���m ,G�+1�mh�, the entries
of the Hessian become

� �2�

�x0
2 �

x±h
*

� g1
−1 − �±h � �±h,

� �2�

�x�
2 �

x±h
*

�
1

L
�g2

−1 − �±h� �
1

L
�±h,

� �2�

�x0�x�
�

x±h
*

� −
1

L
�±h,

� �2�

�x��x��
�

x±h
*

= 0.

The corresponding characteristic equation is

det�H�,±h − �1� = � 1

L
�±h − �	L−1���±h − ��� 1

L
�±h − �	

−
1

L
�±h

2 � = 0.

The solutions for this equation, disregarding terms of O�L−2�
and O�hL−1�, are

�0,±h = �±h +
1

L

�±h
2

�±h

� �0
1 ± 2���m,g1� − 1����m,G� + 1��1 − m2�mh� ,

�1,±h =
1

L
��±h −

�±h
2

�±h
	

� �1�1 ± 2
��m,g1�2���m,g2� − 1�

1 − ���m,g1� − 1����m,g2� − 1�

	���m,G� + 1��1 − m2�mh	 ,

��,±h =
1

L
�±h � ��
1 ± 2���m,g2� − 1����m,G� + 1��1

− m2�mh� ∀ � = 2, . . . ,L , �B3�

where �0��0+ 1
L

�0
2

�0
, �1� 1

L
��0−

�0
2

�0
� and ��� 1

L�0. The corre-
sponding eigenvectors, up to order L−1, are

u0,±h = �1,−
1

L

�±h

�±h
,−

1

L

�±h

�±h
, . . . ,−

1

L

�±h

�±h

L times

�T

,

u1,±h =
1
�L

��±h

�±h
,1,1, . . . ,1

L times �T

,

u�,±h =
1

���� − 1�
�0,1,1, . . . ,1

�−1 times

,− �� − 1�,0,0, . . . ,0

L−� times

�T

∀ � = 2, . . . ,L .

�B4�
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These vectors satisfy the normalization condition
u�,±h

T u��,±h=
����1+O�L−1��∀� ,��=0,1 , . . . ,L. The linear
transformation from the canonical basis to the basis of eigen-
vectors is then represented by a matrix with the entries

�U±h�ij � �U0�ij = 
0i
0j +
1

�j�j − 1�
��

k=1

j−1


ki − �1 − 
0j�

	�1 − 
1j�
ij�j − 1�	 +
1
�L


1j�
0i
�0

�0
+ �1 − 
0i�	

−
1

L

0j�1 − 
0i�

�0

�0
, �B5�

ignoring terms of O�hL−1/2�. Because this transformation is a
rigid rotation, the following properties are satisfied:
�det�U±��=1 and U±h

T U±h=U±hU±h
T =1.

Second-order terms in Eq. �B2� can be rewritten using
the diagonal representation of the Hessian. Therefore,
keeping only terms of order O�L−1� we have that
�x−x±h�TH�,±h�x−x±h�= �x−x±h�TU0U0

TH�,±hU0U0
T�x−x±h�

= �y−y±h�TH�,±h� �y−y±h�, where y�U0
Tx and H�,±h�

�U0
TH�,±hU0 is the diagonal representation of the Hessian,

i.e., �H�,±h� �ij =
ij�i,±h. Using the diagonal representation in
conjunction with Eq. �B2� one obtains an expression for the
normalization term,

Z�h → 0,g1,g2� � e−nL��0−mh� � dy exp�−
nL

2
�y − yh

*�TH�,h� �y − yh
*�	 + e−nL��0+mh�

	� dy exp�−
nL

2
�y − y−h

* �TH�,−h� �y − y−h
* �	 � e−nL�0�2�

nL
	�L+1�/2�enLmh

�=0

L

��,h
−1/2 + e−nLmh

�=0

L

��,−h
−1/2	 .

For a small field, the product of the eigenvalues can be approximated by


�=0

L

��,±h
−1/2 � 
1 � ���m,g2� − 1����m,G� + 1�Lmh�

�=0

L

��
−1/2.

Thus, the expression for Z reduces to

Z�h → 0,g1,g2� � e−nL�0�2�

nL
	�L+1�/2


�=0

L

��
−1/2

„enLmh
1 − ���m,g2� − 1����m,G� + 1�Lmh�

+ e−nLmh
1 + ���m,g2� − 1����m,G� + 1�Lmh�… .

The mean value of a given function f�x� is then given by

�f�x��h → 0,g1,g2� � Z−1e−nL��0−mh� � dy exp�−
nL

2
�y − yh

*�TH�,h� �y − yh
*�	� f�xh� +

1

2
�y − yh

*�TH f ,h� �y − yh
*�	

+ Z−1e−nL��0+mh� � dy exp�−
nL

2
�y − y−h

* �TH�,−h� �y − y−h
* �	� f�x−h� +

1

2
�y − y−h

* �TH f ,−h� �y − y−h
* �	 ,

where H f ,±h� is the Hessian of the function f in the basis of
eigenvectors of H�±h, evaluated at the critical points. The
linear terms in the expansion of f�x� do not contribute to the
expectation value. The Gaussian integral of the cross prod-
ucts of the type �yi−yi,±h

* ��yj −yj,±h
* � with i� j are zero, thus

the Gaussian integral of the second term in the expansion of
f�x� becomes

I± =
1

2
Z−1e−nL��0�mh� � dy exp�−

nL

2
�y − y±h

* �TH�,±h� �y

− y±h
* �	�y − y±h

* �TH f ,±h� �y − y±h
* � ,

I+ �
1

2

1 − e−2nLmh
1 + 2���m,g2� − 1����m,G� + 1�Lmh��

	
1

nL
�
�=0

L

��,h
−1 �H f ,h� ���,

I− �
1

2
e−2nLmh
1 + 2���m,g2� − 1����m,G� + 1�Lmh�

	
1

nL
�
�=0

L

��,−h
−1 �H f ,−h� ���. �B6�
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Using the expansion f�x±�� f�±x0+h��m ,G��
� f�±x0�+h�T�m ,G�� f�±x0�= f�±x0�+
f�±x0�h where

x0
T=m�g1 ,g2 ,g2 , . . . ,g2

L times

� and �T�m ,G�=G−1��m ,G�

��g1 ,g2 ,g2 , . . . ,g2

L times

�, the diagonal entries of the transformed
Hessian are

�H f ,±h� ��� = �
i,j=0

L

�U±h��i�U±h��j�H f ,±h�ij

= �
i,j=0

L

�U±h��i�U±h��j� �2f

�xi�xj
�

x±

� �
i,j=0

L

�U0��i�U0��j�� �2f

�xi�xj
�

±x0

+ h��T�m,G� �
�2f

�xi�xj
�

±x0

	
� ��H f��±x0

��� + ��
H f��±x0
���h , �B7�

with ��
H f��±x0
��� defined by the second term in �B7�. Using

the entries of the diagonalized Hessian, the last term in the
integrals �B6� becomes

1

nL
�
�=0

L

��,−h
−1 �H f ,±h� ��� �

1

nL

1

�0
��H f��±x0

�00

+
1

n

�0

��0�0 − �0
2�

��H f��±x0
�11

+
1

n

1

�0
�
�=2

L

��H f��±x0
���,

disregarding terms of O� h
n + h

L
�. The expectation value of an

arbitrary function f can then be approximated by

�f�x��h → 0+,g1,g2� � f�x0� +
1

2

1

nL
�
�=0

L

��
−1��H f��x0

���

− e−2nLmh�f�x0� − f�− x0�� + 
f�x0�h , �B8�

where we have disregarded terms of O� h
n + h

L
�,O� 1

ne−2nLmh�,
and O�Lhe−2nLmh�. By simple inspection, Eq. �B8� is equiva-
lent to the RS mean value equation �A7�.

The single variable mean value is then

�bk
�a�h�k

t → 0,g1�k
t ,g2�k

t � = �

bk�

Pt�bk�
y�����bk
�a

= �tanh�x0 + x� + h�k
t ��h�k

t → 0,g1�k
t ,g2�k

t � .

The expansion for f�x�=tanh�x0+x�+h�k
t � is

f�x� � m�k
t + �1 − �m�k

t �2�

��1,0,0, . . . ,0

�−1 times

,1,0,0, . . . ,0

L−� times

�T��m�k
t ,G�k

t �h�k
t ,

which results in the following expression for the single vari-
able mean value:

�bk
�a�h�k

t → 0,g1�k
t ,g2�k

t � � �1 − 2e−2nLm�k
t h�k

t
�m�k

t

+ ��m�k
t ,G�k

t ��1 − �m�k
t �2�h�k

t − m�k
t �1

− �m�k
t �2�

1

nL
�
k=0

L

�k
−1�M�0��kk,

where �M0��ij =
0i
0j +
0i
�j +
�i
0j +
�i
�j is a matrix such
that �Htanh�x0+x���x0

=−2m�k
t �1− �m�k

t �2�M0�. In the basis of the
H� eigenvalues, the expressions for the diagonal elements of
this matrix are

�M0�� �kk = �
i,j=0

L

�U±h�ik�U±h� jk�
0i
0j + 
0i
�j + 
�i
0j + 
�i
�j�

= ��U±h�0k + �U±h��k�2,

�M0�� �00 � 1 −
2

L

�0

�0
,

�M0�� �11 �
1

L
��0 + �0

�0
	2

,

�M0�� �kk = 
k�

� − 1

�
+ ��k − � − 1�

1

k�k − 1�
∀ � = 2, . . . ,L ,

�B9�

where ��n�=1 if n�0 and 0 otherwise. The sum of the
eigenvalues’ inverse times the diagonal elements equation
�B9� results in

1

nL
�
k=0

L

�k
−1�M0�� �kk

�
1

n

1

�0
�
k=2

L �
k�

� − 1

�
+ ��k − � − 1�

1

k�k − 1�	
+

1

nL

1

�0
�1 +

��0 + �0�2

�0�0 − �0
2 	

=
1

n

1

�0
��

k=2

L
1

k�k − 1�	 +
1

nL

1

�0
�1 +

��0 + �0�2

�0� − �0
2 	

=
1

n

1

�0
+

1

nL

1

�0
�1 +

��0 + �0�2

�0�0 − �0
2 −

�0

�0
	

=
1

n
g2�k

t ��m�k
t ,g2�k

t � +
1

nL
�G�k

t ��m�k
t ,G�k

t �

− g2�k
t ��m�k

t ,g2�k
t �� ,

where we have used that �k=2
L �k�k−1��−1= �L−1� /L ,�0

−1

=g2�k
t ��m�k

t ,g2�k
t � and 1

�0
�1+

��0+�0�2

�0�0−�0
2 −

�0

�0
�=G�k

t ��m�k
t ,G�k

t �
−g2�k

t ��m�k
t ,g2�k

t �. The final expression for the expectation
value of a single variable is
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�bk
�a�h�k

t → 0,g1�k
t ,g2�k

t � � �1 − 2e−2nm�k
t h�k

t
�m�k

t −
g2�k

t ��m�k
t ,g2�k

t �
n

�1 − �m�k
t �2�m�k

t −
G�k

t ��m�k
t ,G�k

t � − g2�k
t ��m�k

t ,g2�k
t �

nL

	�1 − �m�k
t �2�m�k

t + ��m�k
t ,G�k

t ��1 − �m�k
t �2�h�k

t . �B10�

To calculate �bk
�abk

�a� �h�k
t →0,g�k

t ,�g�k
t �, an off-diagonal element �a�a�� in the same block �, we can apply Eq. �B8� with

f�x�=tanh2�x0+x�+h�k
t �, thus the Hessian matrix is �Htanh2�x0+x���x0

=2�1− �m�k
t �2��1−3�m�k

t �2�M0�, thus

�bk
�abk

�a��h�k
t → 0,g1�k

t ,g2�k
t � � �m�k

t �2 +
g2�k

t ��m�k
t ,g2�k

t �
n

�1 − �m�k
t �2��1 − 3�m�k

t �2� +
G�k

t ��m�k
t ,G�k

t � − g2�k
t ��m�k

t ,g2�k
t �

nL

	�1 − �m�k
t �2��1 − 3�m�k

t �2� + 2��m�k
t ,G�k

t ��1 − �m�k
t �2�m�k

t h�k
t . �B11�

Finally, to calculate the expectation value for the product of two variables belonging to different blocks ���� �the sub-block

index a is insignificant in this case�, �bk
�abk

��a �h�k
t →0,g1�k

t ,g2�k
t �. We set f�x�=tanh�x0+x�+h�k

t �tanh�x0+x��+h�k
t �, thus the

Hessian matrix

��Htanh�x0+x��tanh�x0+x���
�x0

�ij = M0�m�k
t ��2
i0
 j0 + 
i0
 j� + 
i�
 j0 + 
i0
 j�� + 
i��
 j0� + M1�m�k

t ��
i�
 j�� + 
i��
 j��

− 2M2�m�k
t ��
i�
 j� + 
i��
 j��� ,

where M0�m�k
t ���1− �m�k

t �2��1−3�m�k
t �2�, M1�m�k

t ���1− �m�k
t �2�2, and M2�m�k

t ���m�k
t �2�1− �m�k

t �2�. The diagonal ele-
ments K���;k���Htanh�x0+x��tanh�x0+x���

� �x0
�kk in the basis of eigenvectors of H� are

K���;0 � 2M0�m�k
t � ,

K���;1 �
2M0�m�k

t �
L

��0

�0
��0 + 2�0

�0
	 + 1� ,

K���;j = − 2
 j�M2�m�k
t �

� − 1

�
− 2���j − ������ − j��

M2�m�k
t �

j�j − 1�

− 2
 j���M1�m�k
t �

��
+

M2�m�k
t �

��
��� − 1 +

1

�� − 1
	� + 2��j − ���

M0�m�k
t �

j�j − 1�
,

thus, the sum of the diagonal elements is

1

2

1

nL
�
k=0

L

�k,−±h
−1 K���;k �

1

nL

M0�m�k
t �

�0
�1 +

��0 + �0�2

��0�0 − �0
2�
	 −

1

n

1

�0
�M2�m�k

t ��� − 1

�
+ �

j=�+1

��−1
1

j�j − 1�
	

+
M1�m�k

t �
��

+
M2�m�k

t �
��

��� − 1 +
1

�� − 1
	 − M0�m�k

t � �
j=��+1

L
1

j�j − 1��
= −

g2�k
t ��m�k

t ,g2�k
t �

n
�M1�m�k

t � − M0�m�k
t �� +

G�k
t ��m�k

t ,G�k
t � − g2�k

t ��m�k
t ,g2�k

t �
nL

M0�m�k
t � .

Using the sum of diagonal terms one then derives the expected correlation for variables belonging to two different blocks

�bk
�abk

��a�h�k
t → 0,g�k

t ,�g�k
t � � �m�k

t �2 − 2
g2�k

t ��m�k
t ,g2�k

t �
n

�m�k
t �2�1 − �m�k

t �2� +
G�k

t ��m�k
t ,G�k

t � − g2�k
t ��m�k

t ,g2�k
t �

nL

	�1 − 3�m�k
t �2��1 − �m�k

t �2� + 2��m�k
t ,G�k

t ��1 − �m�k
t �2�m�k

t h�k
t . �B12�

Keeping in mind that �bk
�abk

�a �h�k
t ,g1�k

t ,g2�k
t �=1 and using Eqs. �B10�–�B12�, the covariance matrix entries can be then

calculated as

���kl
t ��a��a� = �bk

�abl
��a��h�k

t → 0,g1�k
t ,g2�k

t ;h�l
t → 0,g1�l

t ,g2�l
t � − �bk

�a�h�k
t → 0,g1�k

t ,g2�k
t ��bl

��a��h�l
t → 0,g1�l

t ,g2�l
t �

= 
kl���kk
t ��a��a�
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���kk
t ��a��a� � 
���
aa��1 − �m�k

t �2� + 
����1 − 
aa��
g2�k

t ��m�k
t ,g2�k

t �
n

�1 − �m�k
t �2�2

+ �1 − 
����
G�k

t ��m�k
t ,G�k

t � − g2�k
t ��m�k

t ,g2�k
t �

nL
�1 − �m�k

t �2�2,

where we have kept only the dominant terms at each entry,

disregarding terms of order O�e−2nm�k
t h�k

t
+ h

n + h
L

�.
If the ��k and bk

a are unbiased variables, the variable
��k

a =�l�k��lbl
a, by virtue of the central limit theorem, obeys

a normal distribution, with mean value and covariance ma-
trix that can be obtained by employing the expressions de-
rived for �,

�u�k
t ��a � ���k

�a� = �

bl�k�


l�k

Pt�bl�
y������
l�k

��lbl
�a

= �
l�k

��lm�l
t ,

���k
t ��a��a� � ���k

�a��k
��a�� − ���k

�a����k
��a��

= �

bl�k�


l�k

Pt�bl�
y����� �
l�k

j�k

��l��jbl
�abj

��a�

− ��
l�k

��lm�l
t 	2

= �
l�k

��l
2 ���lj

t ��a��a�

= 
���
aa�X�k
t + 
����1 − 
aa��

1

n
R�k

t + �1

− 
����
1

nL
�V�k

t − R�k
t � , �B13�

where X�k
t is given by Eq. �A9� and

R�k
t � �

l�k

��l
2 g2�l

t ��m�l
t ,g2�l

t ��1 − �m�l
t �2�2,

V�k
t � �

l�k

��l
2 G�l

t ��m�l
t ,G�l

t ��1 − �m�l
t �2�2,

are macroscopic variables of O�1�. In particular, R�k
t and V�k

t

are free variables that can be used to optimize a given per-
formance measure.

APPENDIX C: THE MESSAGES

From the conditional probabilities of equations �3� and �4�
and with the application of the probability distributions
P���k �B� of Eq. �8� in �5� we can express the message from
nodes y� to nodes bk

a at time t+1 as

m̂�k
t+1 =

�

B�

bk
a�

a=1

n

P�y��ba�P�ba�
l�k

P�bl�
y�����

�

B�


a=1

n

P�y��ba�P�ba�
l�k

P�bl�
y�����

=

� d��kP���k�B��

bk�

bk
a�P�y����k;���1 + ��kbk

T���k
ln P�y����k;���

� d��kP���k�B��

bk�

P�y����k;���1 + ��kbk
T���k

ln P�y����k;���
. �C1�

If P�y� ���k ;��=a=1
n P�y� ���k

a ;��, and ignoring O���k
2 � terms, the traces on bk can be written as

�

bk�

P�y����k;���1 + ��kbk
T���k

ln P�y����k;��� = 2nP�y����k;��

�

bk�

bk
a�P�y����k;���1 + ��kbk

T���k
ln P�y����k;��� = 2n��kP�y����k;��

�

���k
a�

ln P�y����k
ã ;�� ,

thus, following from �C1� and neglecting O�1/n� terms
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�RS�m̂�k
t+1 � ��k

� d��kP���k�B�
a=1

n

P�y����k
a ;��

�

���k
a�

ln P�y����k
a� ;��

� d��kP���k�B�
a=1

n

P�y����k
a ;��

=
��k

�RS�N�k
t � d exp�− n

� − u�k
t �2

2Rt 	�� d� exp�−
�� − �2

2Xt + ln P�y���;��	�n−1

	� d� exp�−
�� − �2

2Xt 	 �

��
P�y���;�� �C2�

and

�1RSB�m̂�k
t+1 � ��k

� d��kP���k�B�
�=1

L


a=1

n

P�y����k
�a ;��

�

���k
��a�

ln P�y����k
��a�;��

� d��kP���k�B�
a=1

n

P�y����k
a ;��

=
��k

�1RSB�N�k
t � d�

�=1

L

exp�−
n

2
� �0�2

Vt − Rt +
���2

Vt − L−1�Vt − Rt�	� 
����

�� d� exp�−
�� − �k

0�t�2

2Xt + ln P�y���;��	�n

	 �� d� exp�−
�� − �k

0��t�2

2Xt + ln P�y���;��	�n−1� d� exp�−
�� − �k

0��t�2

2Xt 	 �

��
P�y���;�� ,

where �RS�N�k
t and �1RSB�N�k

t are suitable normalization constants and �k
0�t�0+�+u�k

t . One can then define

G�y�,� � � d� exp�−
�� − �2

2Xt 	P�y���;�� , �C3�

P�y�,� � �G�y�,��−1� d� exp�−
�� − �2

2Xt 	 �

��
P�y���;��

= �G�y�,��−1� d� exp�−
�� − �2

2Xt 	� − 

Xt P�y���;�� =
�

�
lnG�y�,� , �C4�

�RS�H�,y�� �
� − u�k

t �2

2R�k
t − ln G�y�,� , �C5�

�1RSB�H�0,�,y�� �
1

2
� �0�2

Vt − Rt +
���2

Vt − L−1�Vt − Rt�	
− ln G�y�,�k

0�t� . �C6�

Thus the expression for the RS message is

�RS�m̂�k
t+1 = ��k

� d exp�− n�RS�H�,y���P�y�,�

� d exp�− n�RS�H�,y���
.

In the large n limit, only the solutions ̃�k
t of �

�
�RS�H=0,

that correspond to the minimum of H contribute to the inte-
gral. The dominant term in the integral is obtained via saddle
point methods, which leads to the final expression for the
message

�RS�m̂�k
t+1 = ��k

̃�k
t − u�k

t

Rt , �C7�

where ̃�k
t is given by Eq. �D1�.

The 1RSB case is a little more delicate. The exponential is
a sum over L functions�1RSB�H�0 ,� ,y��. Therefore, a Tay-
lor expansion close to the saddle point of Eq. �D2� is em-
ployed resulting in
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�
�=1

L
�1RSB�H�0,�,y�� � LE0 +

L

2
h0��0�2 + h1�0�

�=1

L

�� +
1

2
h2�

�=1

L

����2 + O��3� ,

where E0= �1RSB�H�̃�k
0t , ̃�k

�t ,y�� is the energy of the ground

state, �i=i− ̃�k
it i=0,� and the entries h0, h1, and h2 sat-

isfy the equation

�h0 h1

h1 h2
	 = ��Vt − Rt�−1 0

0 �Vt�−1 	 − � �P
�
�

=̃
�k
t
�1 1

1 1
	 ,

where ̃�k
0�t is the solution of Eq. �D2�. If �T

= �0 ,1 , . . . ,L� and �HH� jk=
 jk�
 j0h0+ �1−
 j0�L−1h2�
+ �
 j0+
k0��1−
 jk�L−1h1 is the Hessian of
��=1

L �1RSB�H�0 ,� ,y��, then

�
�=1

L
�1RSB�H�0,�,y�� � LE0 +

L

2
��THH�� .

The matrix HH has the same structure as H�, therefore, the
eigenvalues and eigenvectors of HH can be obtained adapt-
ing Eqs. �B3� and �B4� by the substitutions �0=h0, −�0=h1

and �0=h2. Expanding P� ,y�� at the saddle point ̃�k
0�t

one obtains P��k
0��t ,y���P0+P1��0+����+ 1

2P2��0

+����2 where P j �� � jP
� j �=̃

�k
t . The resulting messages are

�1RSB�m̂�k
t+1 = ��k

� d� exp�−
nL

2
��THH��	�P0 + P1��0 + ���� +

1

2
P2��0 + ����2	

� d� exp�−
nL

2
��THH��	 ,

where the term proportional to P1 vanishes for parity reasons. In the basis of eigenvectors of HH, i.e., �=UT�
= ��0 ,�1 , . . . ,�L�T where U is adapted from Eq. �B5�, the message has the form

�1RSB�m̂�k
t+1 � ��k

� d� exp�−
nL

2 �
�=0

L

�������2	�P0 + 1
2P2��TM0��

� ���

� d� exp�−
nL

2 �
�=0

L

�������2	 ,

where �� are the eigenvalues of HH and M0��
� is adapted from Eq. �B9�.

The expression for the message is reduced to

�1RSB�m̂�k
t+1 � ��k�P0 +

1

n

P2

2h2
+ O� 1

nL
	� � ��k

̃�k
t − u�k

t

2Vt − Rt +
��k

2n

P2Vt

1 − P1Vt . �C8�

The expression for the messages from b nodes to y nodes is

m�k
t = �


bk�
bk

a�Pt�bk�
y����� =

�

bk�

bk
a� 

���
�


bl�k�
P�y��B�

l�k

Pt−1�bl�
y�����

�

bk�


���

�

bl�k�

P�y��B�
l�k

Pt−1�bl�
y�����
,

which can be approximated by
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m�k
t �

�

bk�

bk
a�� d��kP�y����k;��P���k�B��1 + ��kbk

T���k
ln P�y����k;���

�

bk�

� d��kP�y����k;��P���k�B��1 + ��kbk
T���k

ln P�y����k;���

=

�
bk

a�=±1

bk
a�� d��kP�y����k;��P���k�bk

a���1 + ��kbk
a� �

���k
a�

ln P�y����k;��	
�

bk
a�=±1

� d��kP�y����k;��P���k�bk
a���1 + ��kbk

a� �

���k
a�

ln P�y����k;��	 =

�
bk

a=±1

bk
a 

���

1 + m̂�k
t bk

a

N�k
t

�
bk

a=±1


���

1 + m̂�k
t bk

a

N�k
t

=


���

1 + m̂�k
t

N�k
t − 

���

1 − m̂�k
t

N�k
t


���

1 + m̂�k
t

N�k
t + 

���

1 − m̂�k
t

N�k
t

= tanh� �
���

arctanh�m̂�k
t �	 ,

but since m̂�k
t �O���k� we have that

m�k
t � tanh� �

���

m̂�k
t 	 . �C9�

APPENDIX D: THE SADDLE POINT OF H

For the RS case the equation to be solved is

�

�
�RS�H�,y�� =

 − u�k
t

R�k
t −

�

�
ln G�,y��

=
 − u�k

t

R�k
t − P�,y�� ,

thus, the equation to be satisfied is

̃�k
t = u�k

t + RtP�̃�k
t ,y�� . �D1�

For the 1RSB case we have that �

�0
�1RSB�H= �

��

�1RSB�H=0,
resulting in the set of equations:

0 = ̃�k
0t − �Vt − Rt�P�̃�k

0�t,y�� ,

0 = ̃�k
�t − VtP�̃�k

0�t,y�� ,

which is equivalent to

̃�k
0�t = u�k

t + �2Vt − Rt�P�̃�k
0�t,y�� , �D2�

where �k
0�t=0+�+u�k

t . Observed that Eq. �D2� is Equiva-

lent to Eq. �D1� and that the ground state ̃�k
t is independent

of the indices 0 and �.

APPENDIX E: THE OPTIMIZATION CONDITION

Our goal is to devise an algorithm that returns a better
estimate of the message at each iteration; we therefore apply
a variational approach that optimizes the free parameters of
the model at each iteration. We expect to find a suitable set of

parameters �c that maximizes the drop in error per bit rate.
The error function has the form

Et��� � �2Pb
t − Mt/�Nt, �E1�

where �2 is a positive constant.
Observe that

Mt − Nt =
1

�2�Ft � dz exp�−
z2 + �Et�2

2Ft

− ln cosh�z�	tanh�z�sinh�Et − Ft

Ft z	 ,

and that sgn�tanh�z�sinh� Et−Ft

Ft z��=sgn�Et−Ft�∀z. Therefore
sgn�Et−Ft�=sgn�Mt−Nt�.

The second term on the right-hand side of Eq. �E1� is an
implicit function of the parameters � through Et and Ft,
therefore

�

��i
� Mt

�Nt	 =
�

�Et� Mt

�Nt	 �Et

��i
+

�

�Ft� Mt

�Nt	 �Ft

��i
, �E2�

where the partial derivatives with respect to Et and Ft are

�

�Et� Mt

�Nt	 = �Nt�−3/2� Dz�1 − tanh2��Ftz + Et��

	�Nt − Mt tanh��Ftz + Et��

�

�Ft� Mt

�Nt	 = �Nt�−3/2� Dz
z

2�Ft
�1 − tanh2��Ftz + Et��

	�Nt − Mt tanh��Ftz + Et�� .

By the definition of the field bkh�k
t we have that sgn�bkh�k

t �
=sgn�bkm�k

t �=sgn�bkmk
t �. Exploiting Gaussian properties of

the distribution of h�k
t �9�,
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Pb
t �

1

2K
�
k=1

K

�1 − sgn�bkh�k
t �� � �

−�

� du
�2�Ft

exp�−
�u − Et�2

2Ft 	1

2
�1 − sgn�u�� = �

−�

−Et/�Ft

Du ,

and we suppose that Et and Ft are both explicit functions of the parameters �, therefore

�Pb
t

��i
= −

1
�2�Ft

exp�−
�Et�2

2Ft 	� �Et

��i
−

1

2

Et

Ft

�Ft

��i
	 .

By differentiation equation �E1� and using Eq. �E2� one obtains

�

��i
Et = −

�2

�2�Ft
exp�−

�Et�2

2Ft 	� �Et

��i
−

1

2

Et

Ft

�Ft

��i
	 − �Nt�−3/2� Dz

Nt − Mt tanh��Ftz + Et�
cosh2��Ftz + Et�

� �Et

��i
+

z

2�Ft

�Ft

��i
	

= − �FtNt�−3/2� du
�2�

exp�−
�u − Et�2

2Ft 	u

2

Nt − Mt tanh�u�
cosh2�u�

− � �Et

��i
−

1

2

Et

Ft

�Ft

��i
	

	 � �2

�2�Ft
exp�−

�Et�2

2Ft 	 +� du
�2�Ft�Nt�3

exp�−
�u − Et�2

2Ft 	Nt − Mt tanh�u�
cosh2�u� � . �E3�

To optimize Et with respect to �i one requires �
��i

Et=0.
The first term on the right-hand side of Eq. �E3� is indepen-
dent of the index i and is zero if and only if the integrand is
an odd function. This is true if tanh�u�= Nt

Mt tanh� uEt

Ft
�∀u�R.

This condition is only satisfied if Et��c�=Ft��c� which auto-
matically makes Mt=Nt. By the application of this condition,
the sum between square brackets in the second term on the
right-hand side of Eq. �E3� is always positive, which implies
� �Et

��i
− 1

2
Et

Ft
�Ft

��i
��i

c =0.

The conditions Et��c�=Ft��c� and � �Et

��i
− 1

2
Et

Ft
�Ft

��i
��i

c =0 imply
that

ln Et = e0 + e1
T�� − �c� + 1

2 �� − �c�TE2�� − �c� + ¯ ,

ln Ft = e0 + 2e1
T�� − �c� + 1

2 �� − �c�TF2�� − �c� + ¯ ,

therefore, if the critical point is a minimum, then the expan-
sion Et /�Ft=exp� 1

2e0+ 1
2 ��−�c�T�E2− 1

2F2���−�c�+ . . .� has
a second term that satisfy the conditions: det �E2− 1

2F2��0
and �E2− 1

2F2�
ii�0, validating the optimization process.
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